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A S Y M P T O T I C  B E H A V I O R  

OF A F L O W  W I T H  A F R E E  S U R F A C E  

A. B. Usov UDC 532.526 : 532.516 

In the present paper we construct the asymptotics of the solution of the plane problem of flow of a 
compressible, viscous fluid with a free surface. In [1-5] this problem is solved under additional assumptions 
of fluid incompressibility or stationarity, small flow viscosity, and smallness of tangent stresses. The case of 
an arbitrary tangent stress on the free surface of a compressible fluid and the nonstationary boundary layers 
arising in this case were not studied. The approach considered here allows one to construct the asymptotics of 
the solution at small t ime values without additional assumptions, with arbitrary tangent and normal stresses 
on the free surface. A boundary layer is constructed for stretching the spatial and time variables. We justify 
the choice of the stretching parameters and present a method for solving the boundary layer equations. 

1. S t a t e m e n t  of  t h e  P r o b l e m .  Consider the plane isothermal problem of a compressible viscous 
fluid flow occupying the lower half-plane, with a free surface under the action of the given forces. The fluid 
flow in fixed Cartesian coordinates xOz with center at an arbitrary point on the free surface of the fluid 
(Fig. 1) is described by the Navier-Stokes equations and boundary and initial conditions which, following [2; 
6, p. 808; 7, p. 156], can be written in dimensionless form (at # = const) as 

M2(0H OH OH) Ov~ OVz 
-bT + ,~ ?-~-~ + ,= F ;  + -b-7 + -N-z = 0, 

(0v. on 1(02v. 02v. 10(0 , .  
Pt,-N- + ~ - ~ 2  + ' :  Oz) =-PS-Z~+Pe~+~tox2 +-g~z2 + 5 ~ t - ~ - 2  + Ozl)' (1.1) 

Pkat  +"-0-2x +'=-0Tz = - P S - 2 + P F ~ + ~ k 0 x 2  +-b-~-z~ + 5 ~ t a z  + 

/ ep p = Dp, II = p(p) - Dlnp;  

v x = v ~ = O ,  p = p . ,  p = D p . ,  I I=Dln(Dp . ) ,  t = 0 ;  (1.2) 

v--~O, V .v - -+O,  p ~ p . ,  p ~ D p . ,  x 2 + z  2 --,c~; (1.3) 

2 (n2Ov~ 20Vz (OVz Ov~'~) 2 1 
P = T'~ + Ree -~z + n~ --~z + n~n~\ Ox + Oz ] - - - - d i v v  at z = ((x, t) ,  

3 Re (1.4) 

R--s (n~r=+n~'~:)t--~x + Oz)  +2 n~T':-O-~z +n:T:  cOz)] =T~, at z = ( ( x , t ) ;  

d( q O( 1 d-[=vz, A =  1+(0r ~ = - I / A ,  n ~ - 0 ~  A, ~ z = - ~ ,  , ~ = ~ =  at ~=r  (1.5) 

Here v = (v~, Vz) is the fluid particle velocity vector in the coordinates xOz; p is the pressure; p is the density; 
F = (F~, Fz) is the vector of external mass forces acting on the fluid; Re is the Reynolds number; M is the 
Mach number; D = const > 0; II is a function of the pressure unified in the whole flow; p, is a given function; 
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T = (T,, T~,) is the vector of external forces acting on the free surface of the fluid F; n = (nz, nz), "r = (r~, 7z) 
are the normal and the tangent to F; ( = ((x,  t) is the elevation of the free surface. Moreover 

Re = p*v*l*/~, c =  x / ~ =  const, v* = l*/t*, M 2 = (v*)2/c 2, 

where p*, v*, l*, and t* are the characteristic values of density, velocity, length, and time respectively; # is the 
dynamical fluid viscosity; c is the local sound propagation speed. Conditions (1.2) are the initial boundary 
conditions, (1.3) are the conditions of decay at infinity, (1.4) and (1.5) are the dynamic and kinematic 
conditions at the free surface. 

The solution of the problem (1.1)-(1.5) depends on two parameters: M and Re. The asymptotics of the 
solution is constructed at large Reynolds numbers (Re --~ c~). As for the Mach number, the following cases 
may arise: 

the order of M depends on that of Re (at Re ~ c~): 

M 2 = 0  [(1/v/-ff~e)k], k r  at R e ~ ;  (1.6) 

M does not depend on Re: 

M 2 = B(1/v/-~e) ~ -= B - const. (1.7) 

The choice between the cases influences the choice of stretching parameters of the boundary layer, which is 
discussed below. In the present work we consider the case of (1.7). 

2. C o n s t r u c t i o n  of  t h e  F u n c t i o n s  of  t h e  F i r s t  and  t h e  Second  I t e r a t i v e  Process .  Following 
[8], we write the solution as 

v = v O + v  1, 1-i=12o+171, p=pO+pl ,  p=pO+pl ,  c = ~ O + c I ,  (2.1) 

where V ~ pO, ii o, co, and pO are the functions of the first iterative process, sought in the form of series 

N N N 
V~ = (v~176 , v~ = Z gkak(x,z,t) , ~o = Z gkCk(x,t), v~ = Z gkbk(x'z't) , 

k=O k=O k=O 

N N N 

pO = ~ r pO = E ekPk(X'z,t), 120 = E e k I I k ( x ' z ' t )  
k=O k=O k=O 

(e = 1/v/-R--e is a small parameter).  

(2.2) 

The equations for determining the functions of the first iterative processes are obtained by substituting 
series (2.2) into (1.1)-(1.5). In the leading-order approximation we get the Euler equations of an ideal, 
incompressible flow. 

The functions V 1, pt, l i t  C1 and pl of the second iterative process are defined in the vicinity of the 
free surface. To determine them, we introduce a local orthogonal system of coordinates yOl~p attached rigidly 
to the free surface F (Fig. 2). As the origin (points O1) an arbitrary point of F is chosen; y denotes the normal 
distance from a point, say A (Fig. 2), to F, and ~ denotes the curve length along P. The functions V I, pl, 
H l, C 1, and pl are sought in the form of series 

N N N 

k:N3 k=N3 k=N3 (2.3) 
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N ;~ N 
1 E ekgk( s,~, r) x = ~ ekhk(s,~,r), % = C ~= E ~kXk(~,~), V ~ = ( ~ , ~ ) ,  "~ 

k=N 4 k=N 1 k=N 2 

(N, N1, N2, Na, N4 are integers). 
The vectors V ~ and V 1 can also be represented as 

v o = (~o,  ~o) ,  v ,  = (~, ~), 

N N 

N 
o E ?~~ Vy 

k=0 

N 
(2.4) 

1 1 o E?b~ ~ =  E ?h~ ~ =  }2 ?g~(~,~,T). 
k=O k=N 2 k=N 2 

The functions ak, ilk, /3~, Xk, hk, and gk (k = 0, 1, 2, . . . ,  N) of the boundary layer depend on the stretched 
variable 

= y/?~ (2.5) 

~- = tie k2 (2.6) 

and on the "fast" time 

(kl, k2 are numbers, kl > 0, k2 ) 0). 
The choice of the stretching parameters (kl and k2) is based on the analysis of the flow equations 

written in the local coordinates. To construct the boundary layer it is required that the order of the term 
(02v~/Os 2) be not less than that of ( 0 I P / 0 ~ ) ,  (v 1, V ) v  1, and (Ov~/Ot) at e ~ 0. Otherwise, to determine the 
boundary layer correction terms one will obtain equations of no higher than the first order with respect to s. 

1 Since we have two boundary conditions for the function v~,, a contradiction arises that makes the assumption 
unacceptable. Substituting the series (2.2)-(2.4) into the equations of motion requires satisfying the following 
inequalities (at e ~ 0): 

N2-k l+N1  hN t  OgN2 g2+N2-2kl 02gN2 --NZ <- --N-S' 

e2+gl-2k 1 02hNt eY3_k 10!g3 if k2 r 0, 
>1 O~ 

_ 0gN 2 82+N2-2k I 02..qN2 
cN~ k2--g-~r <<. Os2 , 

" o,- 102gN2 2+/~2-'gl ~ ~ C N3 ~0!N3 , 

that is, respectively, 

2 - 2kl ~< -k2 ,  2 - 2kl ~ N1 - kl, 2 - 2kl ~< N3, N1 + 2 - 2kl ~< N3 - kl if k2 r 0. (2.7) 

To preserve the continuity equation in stretched variables it is necessary that the order of the terms (Ov~/Ocp) 
and (Ov~/Os) [(orI1/Ot) and (Ov~/O~), (Ovly/Os) at k2 # 0] have an identical order of smallness (at ~ --+ 0). 
From here we find that 

Na - k2 = N1 - kl if k2 # 0; N2 = N1 - kl. (2.8) 

We substitute the series (2.2)-(2.4) into the second boundary condition (1.4). In the resulting relation we 
expand the functions dependent on the "slow" time t in a Taylor series at t = 0, and see that to satisfy the 
boundary condition in the leading-order approximation (at e ---* 0) the following equation should hold: 

0gN2 0 (Oa~ = 0  at T~, - O, eN2-kx Os + ek2r ~ \  0y / t=y=0 

or 

~N2-kl+2OgN2 _~k2T at T~, ~0, 
Os Ot t=y=o 
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i.eo, 

N2 = kl + k2 at T~ ~ 0; (2.9) 

N2 = - 2  + kl + k2 at T~, ~ 0 .  (2.10) 

The kinematic condition (1.5) implies that 

N4 - k2 > min(N1, N2). 

Employing relations (2.7)-(2.10) we obtain the following possible versions of boundary layer stretching: 

k 2 = 0 ,  k 1 = 4 / 3 ,  N 1 = 2 / 3 ,  N 3 = 0 ,  N 2 = - 2 / 3 ,  (2.11) 

and also a class of coinciding stretching parameters, which satisfy the relations 

kl > 2 ,  k 2 = 2 k l - 2 ,  N 2 = - 4 + 3 k l ,  N 1 = - 4 + 4 k 1 ,  N 3 = - 6 + 5 k l ;  (2.12) 

k 2 = 2 ,  k 1 = 2 ,  N 1 = 4 ,  N 3 = 4 ,  N 2 = 2 .  (2.13) 

Solutions corresponding to (2.12) obey the same equations and yield the same result after switching to 
non-stretched coordinates. In what follows we construct the asymptotics (2.12) and (2.13) and prove their 
equivalence at small time values. 

3. T h e  Case  kl > 2, k2 = 2kl - 2. For example, consider a set of stretching parameters: 

k2 = 4, kl = 3, N1 -- 8, N3 = 9, N2 = 5. 

We substitute (2.2)-(2.4) into the equations of motion, taking into account the results of the first iterative 
process. Expanding the functions dependent on t = r64 and y = sr 3 into the Taylor series t = 0 (y = 0) and 
summing up terms of the same order with respect to r yields the boundary layer equations 

095 0295 Oh8 4 02h8 
at G ~ w 

P* Or - Os 2' P* Or 3 0 s  2 '  

2 [C~fl9 OtO0 I + Og5 Ohs 
M ~--~r +g5  099 y=t=o/ - ~  + Os = 0 ,  f ~ 9 = D l n ~  ~ ~ ~  (3.1) 

at gn 
Ogn+4 02gn+4 Ohn+7 4 02hn+7 

P* Or Os 2 +El ,  p, Or 3 Os 2 + E2, 

Ogn+4 Oh,~+7 M (OZo+  Opo + - - + -  - Z § = e4, (3.2) 
\ ~ -t- gn+4 099 y=t=O] 099 Os 

Here H1 is the Lam6 coefficient of the local system of coordinates y0199: HI = 1 + yze(99); ~e(99) is the free 
surface curvature; the functions El,  E2, E3, and E4 are known from the solutions for k = 0, 1, 2, . . . ,  n - 1. 

Substituting the series (2.2)-(2.4) into the boundary and the initial conditions we obtain at r 

a k = b k = 0, x 2 + z 2 --+ er k = 0, 1, 2, . . .  ; (3.3) 

0, k r 0, 0, k # 0, (3.4) 
P k =  p,, k = 0 ,  P k =  Dp,, k = 0 ,  t = 0 ;  

gk = hk+3 = ~  = ilk+4 = f l ~ + 4  = 0 ,  k = 5 ,  6 ,  . . .  , t ~- 0 ;  ( 3 . 5 )  

( Ohk-4-1 0a~ "~ 2 ( 09k-2 Oh~ "~ 
P k + C ~ 0 = ( r ' ~ ) k + 2 \  Os + Oy 2 -- 5 \--0-~ + 099 ] 

Ohk+ 1 OaOk_2 1 
+ 0----7- + 0-----~ + (hk-2 +a~ y = s = 0; (3.6) 
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where 

Ohk____._~ 2 0g/r O(Oa ~ Ob~ 1 0 ) r n  1 
0r + 0---'-~ q- 4n+j=k-2E ~7 / -0-~-~ + -~y + --ae a ~ = (T~)k, y = a = 0, (3.7) 

0, k r  n = 0 ,  1 , . . . ;  
= 

cOtk/2 I,=o' k = 4n, 

dCk/dt = bk, dxk/dr = g~-4, Y = s = 0. (3.8) 

Condition (3.6) involves functions that  depend both on the "slow"t = re 4 and "fast" t ime r. Let us split it 
into two conditions, one containing only the functions of the "slow" time t, and the other containing the rest 
of the functions. This results in 

Oh~ 2 2(0b~ a ~ 2 )  
Pk =(Tn)k+2  Oy 3 \ - - ~  + ~  + -  ' y = 0 ;  (3.9) 

/3~ = 20hk+l 2 (Oqgk_2 Ohk+l 1 ) 
Os 3 \ - - ~  + ~ss +-aehk-2 , a = 0 .  (3.10) 

The problem is solved by the following algorithm: 
(1) The Euler equations are solved under the conditions (3.3), (3.4), (3.8), and (3.9) (k = 0) for 

determining P0, H0, @, a0, b0, and p0; 
(2) The problem (3.1), (3.5), (3.7), (3.8), (3.10) (k = 2, 4) with the conditions of decay at infinity is 

used to determine g5, h8, a9,/39,/30 and X9; 9, 
(3) The algorithm is repeated from step 1 with k = k + 1. 
Now we will turn our at tention to the determination of the main terms of the boundary-layer corrections 

to the solution. Using Green's function, we write the solution of (3.1) as 

] OTto 4 f Ogb=oR(s,(r_t)4/3)dt ' (3.11) g5 =-2p, o t - - ~ l t = o n ( S , r - t ) d t ,  h 8 -  3p, o 

where 

R(a, r) = (47rr/p,) (-1/2) exp(-s2/(4r/p,)) (rr = 3.14159265...).  (3.12) 

4. T h e  Case  k2 = 2, kl = 2. Proceeding as in Section 3 we obtain the problems 

at ~o egg 2 02g2 59h4 _ 0~4 4 c92h4 
P* Or - 082' P* Or P*-&s +-3 08 - - T '  

C9g2 (9h4 
M2 \(~0~4 + g2 -~OP~ y=t=o + ~ + ~ = 0, /34 = D in 8 ~ ~0 = Da4; 

(4.1) 

at ~,z 
Ogn+2 02gn+2 

fl* 0 r  - 082 + El ,  ~ + 4  = D~n+4, 

Ohn+4 O~n+4 4 02hn+4 
P* Or - P* 0---'7 . -+ 3 Os--'-'-'g--+ E2, fin+4 = E4, 

+ - - +  - Ea. M 2 + gn+20~ y=t=0] 0~ OS 

(4 .2)  

Here Ek (k = 1, 2, 3, 4) are known functions. The boundary conditions have the form (3.3)-(3.10). 
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Let us prove the equivalence of Eqs. (3.1), (3.2) and (4.1), (4.2) at small t ime values (t < r Employing 
the method of [9] we solve the problems (3.1) and (4.1). We make the change of variables 

7" 1 ~ V / ~ .  = s / r  

The solution is sought in the form 

gb(s, qO,7-) = G0( r ,~ )  + V l G l ( r , ~ )  + . . . ,  hs(s ,%r)  = H0(r, q0) + rlHl(r, qo)+...  (4.3) 

We substitute (4.3) into (3.1). Summing up coefficients of the same order of r l ,  we have the problem for the 
first two nonzero terms of expansions (4.3) 

r OG2 1 02G2 r OH2 1 02H2 
G2 2 0---7- P* Or 2 , H2 2 Or P* Or 2 . (4.4) 

Applying the same procedure to problem (4.1) yields exactly Eqs. (4.4). The boundary conditions of the two 
problems coincide. Consequently, after switching to the variables y, ~0 the main terms of both asymptotics 
(2.12) and (2.13) at small t ime values [see (4.3)] coincide. Therefore, the two asymptotics are equivalent and 
we may confine ourselves only to those of Section 3. 

5. T a n g e n t  S t r e s s  on  t h e  Free  Sur face .  In order to illustrate the asymptotic theory developed in 
Section 3, consider an initially resting flow under the effect of tangent stress acting on its free boundary. Let 

F~ = Fz = 0 in (1.1), 

T, = O, T~ = f ( t , : )  in (1.4), (5.1) 

f(0, c2) = 0, p, = const in (1.2). 

Here f is a given function. In compliance with Sections 1-3 the leading terms of asymptotic expansion of the 
solution have the form 

7 2 OT~ 
= - - - -  r R(s, tie 4 -- r) dr, gs(s/ea'%t/e4) P* o ~ t = o  

t/e 4 
4 [ 0 9 5  

hs(a/ca'~'t/r - 3p, ~ j 0~1~=o R ( s ' ( t / e 4 -  r )4 /3 )d r ,  
(5.2) 

4 s=O ) 
1 (ogs oh8 d,, 

/39(s /ea '~ ' t /e4)  -- Me o \ Oq~ Is=o + ~ + M2g5 ~ y=t=o 
s:O 
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tie 4 

X9(~fl't/~4) = J 90 s=0 d% 
0 

where R is determined from (3.12). 
Due to the splitting of the boundary condition (3.6) in (3.9) and (3.10), the functions of the first 

iterative process equal zero identically in any approximation. This is where it differs from an incompressible 
fluid [5]. The solution of the problem has a boundary-layer nature and reads as 

II = D ln(Dp,)  + 1I 1 = D In(Dp,) + ~9fl9 + ~l~ 0 J r . . .  , V ~-= (Vy, 1)~), 

= e~162 + e10~lo + . . .  , vy = vyl = eShs + e~ + . . .  , v~, = %1 = eS gs + e6 g6 + . . . .  

Figure 3 shows a plot of the tangent component of the velocity vector (function tv l) in a fixed point 
= ~. ,  t = t.. Here 

t. 
1 

J r l v q :  - r dr. 
Ci - e pv,7_ o 

1 (exponential decay when moving off the free boundary). 1 and H i behave similarly to v~ The functions vy 
Figure 4 shows the curl of velocity (function I~l = Irot V{) in a fixed point ~ = ~, ,  y = y,. The 

vorticity grows exponentially as the time increases. The plots in Figs. 3 and 4 are presented for f(~o, t) = t. 
We are unable to apply the methods of [1-5] to develop an asymptotic theory for the problem (1.1)- 

(1.5) in the case (5.1). Further assumptions are necessary concerning fluid incompressibility, flow stationarity 
or small viscosity, and smallness of tangent stress [f = O (1) at ~ ~ 0]. The methods considered in this work 
allowed us to present explicit formulas (5.2) for the main terms of asymptotic expansions of the solution at 
small t, without additional assumptions. 

The author thanks Prof. E. N. Potetyunko for formulating the problem and discussing of the results. 
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